
A General Algorithm for Nonnegative 
Quadrature Formulas* 

By M. Wayne Wilson 

Abstract. A general algorithm is presented for determining numerical integration 
formulas exact for an arbitrary finite set of continuous functions defined on a com- 
pact set, involving nonnegative combinations of function values at a finite number 
of points in the set. Examples are given. f 

1. Introduction. The purpose of this paper is to present an algorithm for obtain- 
ing one- and multi-dimensional quadrature formulas of the form 

r ~~~~n 
co(t)f(t)dt Xif(ti), (t) ? 0 

i=O 

where the base points to, t1, . * , tn are within the compact region T, the coefficients 
XO, X1, ***, Xn are nonnegative, and where the formula is exact for the span of n + 1 
given functions defined on T. The advantages of formulas satisfying these properties 
is well known in the lore of numerical analysis, and will not be discussed here. 

Let T be a compact set of Er. Let CG(T) be the span of n + 1 continuous linearly 
independent functions po(t), * ., On(t), defined on T. (T necessarily contains at 
least n + 1 points.) A nonnegative linear functional is a linear functional L such that 
L(p) > 0 whenever p(t) > 0 on T. Such an example is the integral, 

L (f) o(t)f(t)dT, co(t) ? 0. 
T 

Except in degenerate situations, this is actually strictly positive, i.e. p(t) > 0, 
p(t) 0 O. X= L(p) > O. 

Now, it is known that if Cn(T) satisfies the Kreln condition (3 p(t) ECn(T) 
s.t. p(t) > a > 0 on T), and if L is a nonnegative linear functional, then there exist 
points to, to, . . I, tn C T, and nonnegative scalars Xo, X1, . . ., X, such that 

(1.1) L(f) - XLf(ti), I Vf E Cn(T). 

Various proofs are given in Rogosinski [4], Tchakaloff [6], Wilson [7], [8], and Davis 
[1], [2]. (The Krein condition is no real restriction, since, if it does not hold, we can 
append on+, 1 to the set 4o, O,, , * , and work with the new set. A quadrature 
formula, exact for the new set, is exact for the given set, at the cost of at most one 
extra base point or function evaluation.) The proofs of Davis are constructive and 
provide a theoretical basis for the algorithm given in Section 2. He showed that if 
{Pi} is a dense sequence in T, and L is a strictly positive linear functional, then for 
N sufficiently large, there exist constants Xo, Xi, * * *, XN, nonnegative, such that 
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N 

L(f) = Xif(P), Vf E Cn(T). 

If TN = {to, to, , tN} is a finite subset of T, we say that TN supports a non- 
negative quadrature formula w.r.t. Po, 4i, ** , 4n if there exist nonnegative con- 
stants X 1, Xi, Xv such that 

N 

(1.2) L(f) = Xnff(t), dVf E Cn (T). 
i=o 

Davis' proof then shows how to construct a set TN which supports a nonnegative 
quadrature formula. Once we obtain the expression (1.2) (where N > n, usually) we 
may use the Steinitz Algorithm to reduce the expression to the form (1.1). To use 
this algorithm, note that (1.2) is equivalent to the system of equations 

N 
c= E xe(ti) 

i=O 

where c = (Loo, Lo), * *, Ln4,)t, 4(t) = (Oo(t), 4)(t), *,n(t)). 
We now outline the Steinitz Algorithm. Let c = SiNo Xjxij where Xi > 0, and 

assume x0, x1, * *, XN are linearly dependent. Thus, an expression 

N 

0 =E aiX 
i=0 

exists, where some at > 0. Define 

cr=max {a/Xi, i = 0, 1, , N}> 0. 

Then 

c = - (oac - 0) = E Xi 

and, not only are all the coefficients still nonnegative, at least one vanishes. Thus by 
repeating this process, we can reduce the strictly positive expression c = Eto Xixi 
to a strictly positive combination of linearly independent vectors. 

Immediately, if T can be decomposed into subregions where known rules exist, 
we can formulate a rule like (1.2), and thus derive a rule like (1.1). A simple example 
of this would be integration of polynomials over a sum of disjoint intervals. Cross 
product regions can be treated similarly. (See Davis [1].) 

2. Algorithm. If we suppose that a rule (1.2) exists, then we have a solution to 
the system of (nonlinear) simultaneous equation, N > n, 

N 

(2.1) E Xfi(tj) = c,, i=0,1,2, *,n, 

where c =_ L4oi, Xi > 0, or, in matrix form 

4(n, N) I = c 

where ; is an (N + 1)-vector, and c an (n + 1)-vector. The unknowns are, of course, 
to, ti, . * *, tN, and Xo, X1, . ., IX. 
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On the other hand, if we assume a set of (N + 1) points, TN {to, ti, * tN} 

C T, then the system is linear, and, using a standard linear programming algorithm 
like the simplex method, one can determine if the system 

(2.2) P(n, N); = c 

has a nonnegative solution, 1* > 0 (component-wise), by exhibiting one. (There 
will in general be an infinite number of nonnegative solutions, if there are any. 
However, if a L. P. algorithm determines a solution, it has at most n + 1 non- 
negative components, the rest being zero, and of course TN supports a nonnegative 
quadrature formula.) 

Thus, our algorithm can now be stated: 
Given: oo(t), 01(t), * *, On(t). 
Given: L, strictly positive linear functional. 
Given: c = (Lqo, Lq1, * * , Lon)t. 
Given: An infinite sequence of point sets 

TN = {to(N), tl(pN), . . , tN(}, N = N1, N2, N3, * , 

where n < N1 < N2 < N3 
1. Set i = 1. 
2. Set N =N. 
3. Calculate the matrix 41(n, N) = ) (t/(N)). 
4. If the system 4(n, N) 2 = c has a nonnegative solution, accept the solution 

found, and finish. 
5. If no nonnegative solution is found, set i = i + 1, go to 2. 
Note the generality of the framework. We place no restrictions on the shape of 

T, other than compactness. It may or may not be convex, simply connected, 
arcwise connected, or discrete. The functions 0o, 01, **, 4 are required to be con- 
tinuous and linearly independent on T. They may be in several variables, be a 
Chebyshev system, or be a set of solutions to some partial differential equation. 
We can thus create at will formulas which are of "high precision" with respect to 
a particular class of basic functions. From a practical point of view, however, we 
are restricted in that we have to be able to precalculate L4o, Lo1, * * *, Lon. Another 
restriction of course lies in the matrix size requirements of the particular linear 
programming code used. 

We might, following Davis, take TN to be the first N + 1 points of dense sequence 
in T. However, in practice, we have used sets TN, such that UN=1 TN is dense in T. 
For example, on the interval [- 1, 1], one might choose the roots of the Legendre 
polynomial PN for the set TN. 

3. Examples. 
Example 1. Let us consider 4)i(t) = ti, i = 0,1, **, n, defined on [-1, 1], and 

let IN-- {-1 + 2i/N, i = 0, 1, * * *, N}. Since we know the Cotes rules, we have 
that for N = n, n = 2, 3, ..., 7, 9, IN supports a nonnegative quadrature formula 
for the usual integral, (weight function = 1). However, for n = 8, 10, 11, 12, ... * 
there is no positive-term quadrature formula. Using the programming algorithm 
and the scheme above, we have calculated the function N(n), n = 1, 2, * , 29, 
defined to be, for given n, the least N such that IN supports a nonnegative quadrature 
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of degree n. These values appear in Table (3.1). Table (3.2) gives the coefficients and 
points for n = 8, N = 9. See Wilson [8] for additional details. Note that the solution 
obtained is not symmetric. One can easily adjust the scheme to produce symmetric 
solutions by working on the interval [0, 1], and ignoring the odd functions t, t3, 

Example 2. Consider the simplex in the plane, with vertices (0, 0), (0, 1), (1, 0). 
The dimension of the space of 2-dimensional polynomials of degree k is 

N 2+kX 
Nk = k) 

We took two distinct partitions on [0, 1], a "closed" partition, 

Pi I {0,1 N, 21N, ... 1}, N =Nk ly 

and an "open" partition 

P2 = {1/2N, 3/2N, *.. , 2N - 1/2N} , N = Nk-1, 

and formed two point sets T1 and T2 by taking the points of P1 0 P1 and P2 0 P2 
which lay in the simplex. For k = 1, 2, 3, 4, 5, both meshes supported nonnegative 
quadrature rules. Some similar experiments were tried in higher dimensions. Al- 
though the rules found do not compare favorably with known rules for the n-simplex 
with regard to the number of function evaluations required, they do illustrate how 
rules may be found for arbitrarily shaped regions and arbitrary nonnegative 
weights. For high degree, and large dimension, this scheme suffers the serious draw- 
back that the matrices 4(n, N) are quite large. Further, round-off errors in the 
linear programming algorithm may become quite large. 

TABLE 3.1 
Values of N(n) 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
N 1 2 3 4 5 6 7 9 9 13 13 17 17 22 22 
n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
N 26 26 32 32 38 38 45 45 52 52 61 61 69 69 

TABLE 3.2 
Weights and Points for n = 8 

Based on 19 

i ti ci 
0 -1.000000 0.0644420 
1 -0.777778 0.3453348 
2 -0.555556 0.0482143 
3 -0.333333 0.3755357 
4 -0.111111 0.2133482 
5 +0.111111 0.0445982 
6 +0.333333 0.4880357 
7 +0.777778 0.3573884 
8 + 1.000000 0.0631027 
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TABLE 3.3 
Some Point Sets Which Support 
Nonnegative Quadrature Formula 

base 
functions 1, t, tit 

Set 2 3 4 5 6 

GN + + + + + 
LN + + + + + 
CN + - + + + 

base 
functions 1, t, Itj, t2, sin(t), exp(t) 

N 
5 6 7 8 9 

GN - + + + + 
LN - + + + + 
CN - + - + + 

base 
functions 1, |tI, t2, |tj3 

\N 
5 6 7 8 9 

GN - + + + + 
LN - + - + + 
CN - - - + + 

base 
functions 1, t, t2, t3, (t)+, (t + V) 

\N 
5 6 7 8 9 

GN - + + + + 
LN + - + + + 
CN + + + + 

Example 3. Finally, experiments were carried out for some rather nonstandard 
base functions defined on [-1, 1], none of which are Chebyshev systems. However, 
it seemed reasonable to try the abscissas of some rather well-known positive-term 
integration rules, of polynomial precision 2N + 1, 2N - 1, and N, respectively. 
The point sets are 

GN {abscissas in Gauss-Legendre N + 1 point rule, [5, p. 100] 

LN abscissass in Gauss-Lobatto N + 1 point rule, [5, p. 318]} 

CN I {cos (iir/N), i = 0,1, ... N, see [3]}. 
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In Table (3.3), we show, for the set of base functions indicated, those point sets 
which support a nonnegative quadrature formula (w.r.t. the base functions) by 
a +, and those which do not by a -. Note that the function f(t) = (t)+ is defined 
to be zero, if t < 0, and t, for t _ 0. 

The actual rules, which may be of some interest in their own right, are not of 
primary concern here. Rather, we have shown a general algorithmic procedure, 
computationally feasible, to obtain representations of strictly positive linear 
functionals on the spans of some rather unclassical sets of base functions which are 
not Chebyshev sets. Further examples are available upon application to the author. 

4. Conclusion. In all the computed examples, the rule obtained was checked by 
using it to numerically integrate each base function, and comparing the result ob- 
tained with the known value supplied to the algorithm. In all cases, the results were 
accurate to at most the last three significant figures in the precision of arithmetic 
used. If round-off produces results which are not very accurate, one now has a set 
of base points which support a formula, and more accurate results can now be ob- 
tained, for example, by matrix inversion or iterative correction procedures. 

This algorithm compares quite favorably with other algorithms which have 
been devised by the author. The problem of finding Tn = { to, t, ** * , to } , such that 
the system (1.1) has a nonnegative solution, is essentially nonlinear. The approach 
described here is in effect a linearization. Thus, it seems reasonable, that except 
for extremely adverse functions and sets of base points, this algorithm is much more 
efficient and accurate than nonlinear algorithms, and this has been borne out by the 
author's experience. 

The author should like to express his thanks to Professor P. J. Davis, who in- 
troduced the problem, and directed the author's thesis. The author should also like 
to thank the referee for his valuable comments. 
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